Structure-Based drug design

How can we best use the data base of three-dimensional structures to help us more efficiently design drugs?

* X-ray Crystallography- HIV protease inhibitor
* NMR Spectroscopy- SAR by NMR
* Computational modeling
* Ligand binding sites in macromolecules
* Combinatorial chemistry - Huge libraries of small molecules.
Role of X-ray crystallography

* Capable of providing very high resolution structures which are needed to determine precise atomic level descriptions of ligand binding sites.

* Things often crystallize better in the presence of ligand as a result of increased stability (less floppy regions).

* Once crystallization techniques have been worked out for one complex, they should be fairly similar with subsequent complexes.

* Well-suited for studying small samples of molecules that have been screened by a previous method but not really suited for library screenings.
Role of NMR spectroscopy

* One is not always able to get high enough resolution needed for drug design.
* Limited to smaller macromolecules, more or less 30 kDa or less.
* It is a method that is capable of determining the position of some hydrogen bonds.
* It is suited for rapid screening of large number of molecules as potential ligands using SAR by NMR.
* It can be very quick at mapping residues that are altered following ligand binding.
Why is it so hard?

* Proteins exist in many different conformational states which influence and are influenced by ligand binding.
* A single fixed protein structure represents only a very narrow window for ligand binding.
* We must learn how to accommodate loop fluctuations and domain movement in our design regimens.
* We must learn how to deal with solvents and electrostatic interactions if we hope to make more accurate predictions of binding strengths.
SAR by NMR

* NMR-based screening method.
* Uses a simple (quick) experiment to identify small organic molecules that bind to proximal subsites of a protein.
* The molecules are then linked together to produce high-affinity ligands.
* This can be extremely powerful when used with small molecule libraries to identify lead-compounds

Outline of SAR by NMR

\[\Delta G = \Delta G_A + \Delta G_B \]
SAR by NMR applied to Bcl-x_L

- Bcl (B-Cell Lymphoma) family of proteins plays a key role in maintenance of normal cellular homeostasis.
- Overexpression leads to oncogenic transformations and plays a role in drug resistance in certain forms of cancer.
- The family of protein consists of both antiapoptotic (Bcl-2, Bcl-xL) and proapoptotic (Bak, Bax, Bad) members.
- The structure of several family members is known.
- The structure consists of two hydrophobic helices surrounded by 5 to 7 amphipathic helices.
- The antiapoptotic members have a groove that binds to an α-helix (BH3) present in the proapoptotic members.

Identification of first Bcl-\(x_L\) site.

- Performed NMR based screen to identify molecules that would compete with binding of proapoptotic proteins to Bcl-\(x_L\).
- Identified that several biaryl compounds bound to the same binding pocket of Bcl-\(x_L\) as proapoptotic proteins.
- These compounds bind in the same position as a conserved leucine residue in the BH3 helice
- This served as first binding site for SAR by NMR protocol applied to Bcl-\(x_L\).

Affinities of selected biaryl compounds to Bcl-\textsubscript{xL}

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>NMR K\textsubscript{d} (\textmu M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>300 ± 30</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1200 ± 530</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>> 5000</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>> 5000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>> 5000</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2000 ± 1600</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1990 ± 990</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>383 ± 117</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>238 ± 110</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>250 ± 139</td>
</tr>
</tbody>
</table>

Biaryl acid bound to Bcl-\(x_L\)

Black: HSQC of \(^{15}\text{N}-\text{Bcl-}x_L\).

Red: HSQC of \(^{15}\text{N}-\text{Bcl-}x_L\) with biaryl acid (Compound 1).

Identification of first Bcl-x$_L$ site.

- Performed additional NMR based screen to identify molecules that would bind to a different region of Bcl-x$_L$.
- Identified that several aromatic compounds that bound to and adjacent binding pocket of Bcl-x$_L$ as proapoptotic proteins.
- These compounds bind in the same position as a conserved isoleucine residue in the BH3 helice.
- This served as second binding site for SAR by NMR protocol applied to Bcl-x$_L$.

Affinities of selected second site Bcl-\(x_L\) binders

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>NMR (K_d) ((\mu)M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td>4300 ± 1600</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>13000 ± 7000</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>5000 ± 2000</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>2000 ± 440</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>11000 ± 4800</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>13000 ± 4500</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>9000 ± 2000</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>4000 ± 2050</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>6000 ± 1970</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>6000 ± 2000</td>
</tr>
</tbody>
</table>

Napthol analog bound to Bcl-x_L

Black: HSQC of 15N-Bcl-x_L.

Red: HSQC of 15N-Bcl-x_L with biaryl acid (Compound 1).

Green: HSQC of 15N-Bcl-x_L with napthol (Compound 11).

SAR by NMR applied to Bcl-xL

SAR by NMR applied to Bcl-\textsubscript{x}\textsubscript{L}

SAR by NMR applied to Bcl-x_L

SAR by NMR applied to Bcl-x\textsubscript{L}

Affinities of acylsulfonamides to Bcl-x\textsubscript{L}

![Chemical structure of acylsulfonamide](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>R</th>
<th>NMR K\textsubscript{d} (\textmu M)</th>
<th>Bcl-x\textsubscript{L} FPA K\textsubscript{i} (\textmu M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Me</td>
<td>320 ± 35</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td><108</td>
<td>0.245 ± 0.013</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td><108</td>
<td>0.036 ± 0.002</td>
</tr>
</tbody>
</table>

SAR by NMR applied to Bcl-\(x_L\)

![Diagram of SAR by NMR applied to Bcl-\(x_L\)]

Structure of compound 31 bound to Bcl-xL

SAR by NMR applied to Bcl-x_L